Graph:
#y=-3(x-2)^2+5# is a quadratic equation in vertex form:
#y=a(x-h)^2+k#,
where:
#h# is the axis of symmetry and #(h,k)# is the vertex.
In order to graph a parabola, you need the vertex, the y-intercept, x-intercepts, and one or more additional points.
Vertex: maximum or minimum point of the parabola. Since #a<0#, the vertex is the maximum point and the parabola opens downward.
The vertex is #(2,5)#
Y-intercept: value of #y# when #x=0#
Substitute #0# for #x#.
#y=-3(0-2)^2+5#
#y=-3(-2)^2+5#
#y=-3(4)+5#
#y=-7#
The y-intercept is #(0,-7)#.
X-intercepts (Roots): values for #x# when #y=0#
Substitute #0# for #y# and solve for #x#.
#0=-3(x-2)^2+5#
Subtract #5# from both sides.
#-5=-3(x-2)^2#
Divide both sides by #-3#.
#5/3=(x-2)^2# #larr# Two negatives make a positive.
Take the square root of both sides.
#+-sqrt(-5/3)=x-2#
Use the rule #sqrt(a/b)=(sqrta)/(sqrtb)#
#+-(sqrt5)/(sqrt3)=x-2#
Add #2# to both sides.
#2+-(sqrt5)/(sqrt3)=x#
Switch sides.
#x=2+-(sqrt5)/(sqrt3)#
#x=2+(sqrt5)/(sqrt3)#, #2-(sqrt5)/(sqrt3)#
#x=~~3.291, 0.709#
The x-intercepts are: #(2+(sqrt5)/(sqrt3),0)#, #(2-(sqrt5)/(sqrt3))#
Approximate x-intercepts: #(~~3.291,0)#, #(0.709,0)#
Additional point:
Substitute #4# for #x# and solve for #y#.
#y=-3(4-2)^2+5#
#y=-3(2)^2+5#
#y=-3(4)+5#
#y=-12+5#
#y=-7#
Additional point: #(4,-7)#
Summary:
Vertex: #(2,5)#
Y-intercept: #(0,-7)#
X-intercepts: #(2+(sqrt5)/(sqrt3),0)#, #(2-(sqrt5)/(sqrt3))#
Approximate x-intercepts: #(~~3.291,0)#, #(0.709,0)#
Additional point: #(4,-7)#
Plot the points and sketch a parabola through the points. Do not connect the dots.
graph{y=-3(x-2)^2+5 [-10, 10, -5, 5]}