How to integrate the following ??

int(2x)/sqrt(1 - x^2 - x^4)dx

1 Answer
Oct 1, 2017

The answer is =1/2arcsin((2x^2+1)/sqrt5)+C

Explanation:

Perform this integral by substitution

Let x=u^2, =>, dx=2udu

sqrt(-x^4-x^2+1)= sqrt(-u^2-u+1)

int(2xdx)/sqrt(-x^4-x^2+1)=1/2int(du)/sqrt(-u^2-u+1)

-u^2-u+1=1-u-u^2=1-(u^2+u)=(1+1/4-(u^2+u+1/4))

=(5/4-(u+1/2)^2)

So,

1/2int(du)/sqrt(-u^2-u+1)=1/2int(du)/sqrt(5/4-(u+1/2)^2)

Let v=(2u+1)/sqrt5,=>, dv=(2du)/sqrt5

5/4-(u+1/2)^2=5/4-5v^2=5/4(1-v^2)

1/2int(du)/sqrt(5/4-(u+1/2)^2)=1/2int(dv)/sqrt(1-v^2)

This is a standard integral

1/2int(dv)/sqrt(1-v^2)=1/2arcsinv

=1/2sin(2u+1)/sqrt5

=1/2arcsin((2x^2+1)/sqrt5)+C