How to prove (tan^3x-cot^3x)/(tan^2x+csc^2x)=tanx-cotx?

1 Answer
Apr 29, 2018

Please see below.

Explanation:

We know that,

#color(red)((1)a^3-b^3=(a-b)(a^2+ab+b^2)#

#color(blue)((2)csc^2x=1+cot^2x#

#color(violet)((3)tanxcotx=1#

Here,

#(tan^3x-cot^3x)/(tan^2x+csc^2x)=tanx-cotx#

Let,

#LHS=color(red)((tan^3x-cot^3x))/(tan^2x+color(blue)(csc^2x))...toApply(1)and(2)#

#=color(red)(((tanx-cotx)(tan^2x+tanxcotx+cot^2x)))/(tan^2x+color(blue)(1+cot^2x))#

#=((tanx-cotx)(tan^2x+color(violet)(1)+cot^2x))/((tan^2x+1+cot^2x))...toApply(3)#

#=tanx-cotx#

#=RHS#