How to prove that : 1cos4Asin4A=1+2cot2A?

1 Answer
Mar 30, 2018

This identity is FALSE

Explanation:

Putting on a common denominator, we get:

sin4Acos4Asin4A=1+2cot2A

(sin2A+cos2A)(sin2Acos2A)sin4A=1+2cot2A

sin2Acos2Asin4A=1+2cos2Asin2A

sin2A(1sin2A)sin4A=1+2(cos2Asin2A)

2sin2A1sin4A=sin2A+2cos2asin2A

#(2sin^2A - 1)/sin^4A = (sin^2A + 2(1- sin^2A))/sin^2A

2sin2A1sin4A=2sin2Asin2A

2sin2A1sin4A=2sin2A1

And since 1sin4A1, this identity is false.

Hopefully this helps!