How to prove that : 1−cos4Asin4A=1+2cot2A?
1 Answer
Mar 30, 2018
This identity is FALSE
Explanation:
Putting on a common denominator, we get:
sin4A−cos4Asin4A=1+2cot2A
(sin2A+cos2A)(sin2A−cos2A)sin4A=1+2cot2A
sin2A−cos2Asin4A=1+2cos2Asin2A
sin2A−(1−sin2A)sin4A=1+2(cos2Asin2A)
2sin2A−1sin4A=sin2A+2cos2asin2A #(2sin^2A - 1)/sin^4A = (sin^2A + 2(1- sin^2A))/sin^2A
2sin2A−1sin4A=2−sin2Asin2A
2sin2A−1sin4A=2sin2A−1
And since
Hopefully this helps!