How to prove that #(2cos^3theta-costheta)/(sinthetacos^2theta-sin^3theta)=cottheta# ?

1 Answer
May 12, 2018

#"See explanation"#

Explanation:

#= (cos(theta)/sin(theta))*(2 cos^2(theta) - 1)/(cos^2(theta) - sin^2(theta))#

#= cot(theta)*(2 cos^2(theta) - 1)/(cos^2(theta) - (1-cos^2(theta)))#

#= cot(theta)*(2 cos^2(theta) - 1)/(2 cos^2(theta) - 1)#

#= cot(theta) * 1#

#= cot(theta)#