How to prove that #int_0^oo##(e^(-alphax)sinx)/x dx=cot^-1alpha# given that #int_0^oo sinx/x dx = pi/2#?
1 Answer
May 19, 2018
See below
Explanation:
Liebnitz diff under the integral sign:
That is very do-able on its own, but is also the Laplace transform of
#(dI)/(d alpha) =- mathbb L_alpha ( sin x) = - 1/(1 + alpha^2)#
-
We have an IV:
And from a trig identity for