How to prove that tan(pi/4+alpha)-tan(pi/4-alpha)=2tan2alpha?

2 Answers
May 28, 2018

Please see the proof below

Explanation:

We need

tan(a+b)=(tana+tanb)/(1-tanatanb)

tan(pi/4)=1

tan(2a)=(2tana)/(1-tan^2a)

Therefore,

LHS=tan(pi/4+alpha)-tan(pi/4-alpha)

=(tan(pi/4)+tanalpha)/(1-tan(pi/4)tanalpha)-(tan(pi/4)-tanalpha)/(1+tan(pi/4)tanalpha)

=(1+tanalpha)/(1-tanalpha)-(1-tanalpha)/(1+tanalpha)

=((1+tanalpha)^2-(1-tanalpha)^2)/((1+tanalpha)(1-tanalpha))

=(1+2tanalpha+tan^2alpha-1+2tanalpha-tan^2alpha)/(1-tan^2alpha)

=(4tanalpha)/(1-tan^2alpha)

=4tan(2alpha)

=RHS

QED

May 28, 2018

"see explanation"

Explanation:

"using the "color(blue)"trigonometric identities"

•color(white)(x)tan(x+-y)=(tanx+-tany)/(1∓tanxtany)

•color(white)(x)tan2x=(2tanx)/(1-tan^2x)

"consider the left side"

(tan(pi/4)+tanalpha)/(1-tan(pi/4)tanalpha)-(tan(pi/4)-tanalpha)/(1+tan(pi/4)tanalpha)

=(1+tanalpha)/(1-tanalpha)-(1-tanalpha)/(1+tanalpha)

=((1+tanalpha)^2-(1-tanalpha)^2)/((1-tanalpha)(1+tanalpha))

=(1+2tanalpha+tan^2alpha-1+2tanalpha-tan^2alpha)/(1-tan^2alpha)

=(4tanalpha)/(1-tan^2alpha)

=(2tanalpha+2tanalpha)/(1-tan^2alpha)

=(2tanalpha)/(1-tan^2alpha)+(2tanalpha)/(1-tan^2alpha)

=tan2alpha+tan2alpha

=2tan2alpha="right side "rArr"verified"