How to prove that tan(pi/4+alpha)-tan(pi/4-alpha)=2tan2alpha?
2 Answers
Please see the proof below
Explanation:
We need
Therefore,
Explanation:
"using the "color(blue)"trigonometric identities"
•color(white)(x)tan(x+-y)=(tanx+-tany)/(1∓tanxtany)
•color(white)(x)tan2x=(2tanx)/(1-tan^2x)
"consider the left side"
(tan(pi/4)+tanalpha)/(1-tan(pi/4)tanalpha)-(tan(pi/4)-tanalpha)/(1+tan(pi/4)tanalpha)
=(1+tanalpha)/(1-tanalpha)-(1-tanalpha)/(1+tanalpha)
=((1+tanalpha)^2-(1-tanalpha)^2)/((1-tanalpha)(1+tanalpha))
=(1+2tanalpha+tan^2alpha-1+2tanalpha-tan^2alpha)/(1-tan^2alpha)
=(4tanalpha)/(1-tan^2alpha)
=(2tanalpha+2tanalpha)/(1-tan^2alpha)
=(2tanalpha)/(1-tan^2alpha)+(2tanalpha)/(1-tan^2alpha)
=tan2alpha+tan2alpha
=2tan2alpha="right side "rArr"verified"