How to simplify #cos^2 2theta-sin^2 2theta#?

2 Answers
Jun 21, 2018

#cos4theta#

Explanation:

#cos^2(2theta)-sin^2(2theta)#

=#cos2(2theta)#

=#cos4theta#

This is basically the double angle formula

Recall that #cos2x=cos^2x-sin^2x#

Now replace #x# with #2theta#

#cos2(2theta)=cos^2 (2theta)-sin^2 (2theta)#

#cos4theta=cos^2 2theta-sin^2 2theta#

Jun 21, 2018

This simplifies to #cos(4theta)#

Explanation:

Let # A=2theta#.

Then the expression becomes #cos^2A -sin^2A= cos(2A)#. Now reverse the substitution to see that the expression gives #cos(2(2theta))= cos(4theta)#

Hopefully this helps!