How to solve?

Solve tanx+tan2x+tan3x=0tanx+tan2x+tan3x=0 without changing tan into sin and cos.

1 Answer
Jan 24, 2018

The Solution Set is given by,

{kpi/3}uu{kpi+-arc tan(1/sqrt2)}, k in ZZ.

Explanation:

Let, tanx=u, tan2x=v.

Then, tan3x=tan(x+2x)=(tanx+tan2x)/(1-tanxtan2x), i.e.,

tan3x=(u+v)/(1-uv).

:. tanx+tan2x+tan3x=0,

rArr u+v+(u+v)/(1-uv)=0,

rArr (u+v){1+1/(1-uv)}=0,

rArr{(u+v)(2-uv)}/(1-uv)=0,

rArr (u+v)(2-uv)=0,

rArr v=-u, or, uv=2.

v=-u rArr tan2x=-tanx=tan(-x).

Recall that, tantheta=tanalpha rArr theta=kpi+alpha, k in ZZ.

"Case 1 : "v=-u

:. tan2x=tan(-x)

rArr 2x=kpi+(-x), or, 3x=kpi, i.e., x=kpi/3, k in ZZ.

"Case 2 : "uv=2.

:. tanx*tan2x=2,

Using tan2x=(2tanx)/(1-tan^2x), we have, then

(2tan^2x)/(1-tan^2x)=2, or, tan^2x=1-tan^2x, i.e.,

tan^2x=1/2 rArr tanx=+-1/sqrt2,

rArr x=kpi+arc tan(+-1/sqrt2), k in ZZ.

Altogether, the Solution Set is given by,

{kpi/3}uu{kpi+-arc tan(1/sqrt2)}, k in ZZ.