How to solve?

sin2x-2cosx+0.25=0sin2x2cosx+0.25=0

1 Answer
Jan 24, 2018

sin(2x)=2sinx cosxsin(2x)=2sinxcosx then

sin2x-2cosx+0.25=2sinx cosx-2cosx+1/4=0sin2x2cosx+0.25=2sinxcosx2cosx+14=0

then

cos x = 1/(8(sinx-1))cosx=18(sinx1) but

sin^2x+cos^2x = 1sin2x+cos2x=1 so

sin^2x+1/(64(sinx-1)^2)=1sin2x+164(sinx1)2=1 and now solving for sin xsinx we have the real solutions as

sinx = {(-0.998041),(0.794264):}

The next steps are left to the reader.