How to solve 3sin(x)=cos^2(x)?

3sin(x)=2cos^2(x)3sin(x)=2cos2(x)?

2 Answers
May 13, 2018

Given: 3sin(x)=2cos^2(x)3sin(x)=2cos2(x)

Divide both sides of the equation by 2:

3/2sin(x)=cos^2(x)32sin(x)=cos2(x)

Substitute: cos^2(x) = 1-sin^2(x)cos2(x)=1sin2(x):

3/2sin(x)=1-sin^2(x)32sin(x)=1sin2(x)

Add sin^2(x)-1sin2(x)1 to both sides:

sin^2(x)+3/2sin(x)-1=0sin2(x)+32sin(x)1=0

Please observe that the above is a quadratic equation where sin(x) is the variable, therefore, we can use the quadratic formula:

sin(x) = (-3/2+-sqrt((3/2)^2-4(1)(-1)))/2sin(x)=32±(32)24(1)(1)2

sin(x) = 1/2sin(x)=12

sin(x) = -2 larrsin(x)=2 discard because it is outside of the domain of the sine function.

sin(x) = 1/2sin(x)=12

x = sin^-1(1/2)x=sin1(12)

The values for this condition are well known:

x = pi/6x=π6 and x = (5pi)/6x=5π6

This repeats at integer multiples of 2pi2π:

x = pi/6+2npix=π6+2nπ and x = (5pi)/6+ 2npix=5π6+2nπ n in ZZ

May 13, 2018

x=kpi+(-1)^k*pi/6,kinZZ

Explanation:

Here,

3sinx=2cos^2x

3sinx=2(1-sin^2x)

3sinx=2-2sin^2x

2sin^2x+3sinx-2=0

2sin^2x+4sinx-sinx-2=0

2sinx(sinx+2)-1(sinx+2)=0

(2sinx-1)(sinx+2)=0

2sinx-1=0 or sinx+2=0

2sinx=1 or sinx=-2 !in [-1,1]

So,

sinx=1/2

sinx=sin(pi/6)

x=kpi+(-1)^k*pi/6,kinZZ

Note:

If x in[0,2pi),then

sinx=1/2 > 0=>I^(st)Quadrant or II^(nd)Quadrant

=>x=pi/6 or x=pi-pi/6=(5pi)/6