How to solve 3sinx + 3cosx = secx + cosecx for x? Thank you!
1 Answer
Feb 18, 2018
See the answer below...
Explanation:
#=>3sinx+3cosx=secx+cscx#
#=>3sinx+3cosx=1/cosx+1/sinx#
#=>3sinx+3cosx=(sinx+cosx)/(sinx cdot cosx#
#=>(sinx+cosx)(3-1/(sinx cdot cosx))=0#
#=>(sinx+cosx)(3-2/(2 cdot sinx cdot cosx))=0#
#=>(sinx+cosx)(3-2/sin(2x))=0# Either,
#(sinx+cosx)=0#
#=>sinx=-cosx#
#=>tanx=-1=tan(-pi/4)#
#color(red)(ul(bar(|color(green)(=>x=npi-pi/4)|# Or,
#(3-2/sin(2x))=0#
#=>2/sin(2x)=3#
#=>sin2x=2/3=sinalpha#
#=>2x=npi+(-1)^nalpha#
#=>color(red)(ul(bar(|color(green)(x=(npi)/2+(-1)^n(alpha/2))|#
Hope it helps...
Thank you...