How to solve 4sin^2((3x+pi)/6)=34sin2(3x+π6)=3?

So, sin((3x+pi)/6)=+-sqrt3/2sin(3x+π6)=±32. Then what?

2 Answers
Jun 7, 2018

x=(2k+1)pix=(2k+1)πv(2k-1/3)pi(2k13)π

Explanation:

We have sin(2pi/3)=sqrt3/2sin(2π3)=32 (see https://socratic.org/questions/what-is-sin-2pi-3-equal-to)

Therefore
sin((3x+pi)/6)=+-sin(2pi/3)sin(3x+π6)=±sin(2π3)
(3x+pi)/6=(2/3pi +2kpi)3x+π6=(23π+2kπ) v (-2/3pi +2kpi)(23π+2kπ)
-2/3pi23π should have the same sin value as 4/3pi43π
so that we get
3x+pi=6(2/3pi +2kpi)3x+π=6(23π+2kπ) v 6(4/3pi +2kpi)6(43π+2kπ)
3x=(4pi-pi+12kpi)3x=(4ππ+12kπ)v(12pi-pi+12kpi)(12ππ+12kπ)
3x=(3pi+12kpi)3x=(3π+12kπ)v(11pi+12kpi)(11π+12kπ)
x=(pi+4kpi)x=(π+4kπ) v (11/3pi+4kpi)(113π+4kπ)
x=(2k+1)pix=(2k+1)π v (2k-1/3)pi(2k13)π

Jun 8, 2018

x = (2k + 1)pi/3x=(2k+1)π3

Explanation:

4sin^2 ((3x + pi)/6) = 34sin2(3x+π6)=3
sin ((3x + pi)/6) = +- sqrt3/2sin(3x+π6)=±32
a. sin ((3x + pi)/6) = sqrt3/2sin(3x+π6)=32
Trig table and unit circle give 2 solutions for (3x + pi)/63x+π6:
1. (3x + pi)/6 = pi/33x+π6=π3 --> 3x + pi = 2pi3x+π=2π
3x = 2pi - pi = pi + 2kpi3x=2ππ=π+2kπ -->x = pi/3 + (2kpi)/3x=π3+2kπ3
2. (3x + pi)/6 = (2pi)/33x+π6=2π3 --> 3x + pi = 4pi3x+π=4π
3x = 3pi + 2kpi3x=3π+2kπ --> x = pi + (2kpi)/3x=π+2kπ3
General answer: x = (2k + 1)pi/3x=(2k+1)π3
b. sin ((3x + pi)/6) = - sqrt3/2sin(3x+π6)=32
Trig table and unit circle give 2 solutions for (3x + pi)/63x+π6
1. (3x + pi)/ 6 = (4pi/3)3x+π6=(4π3) --> (3x + pi) = 8pi(3x+π)=8π
3x = 7pi + 2kpi3x=7π+2kπ --> x = (7pi)/3 + (2kpi)/3x=7π3+2kπ3, or
x = pi/3 + (2kpi)/3x=π3+2kπ3
2. (3x + pi)/6 = (5pi)/33x+π6=5π3 --> 3x + pi = 10pi3x+π=10π
3x = 9pi + 2kpi3x=9π+2kπ --> x = 3pi + (2kpi)/3x=3π+2kπ3, or
x = pi + (2kpi)/3
General answer: x = (2k + 1)pi/3x=(2k+1)π3