#5/(x + y) + 2/(x - y)=3#
#20/(x + y)-3/(x - y)= 1#
Let;
#1/(x + y) = a and 1/(x - y) = b#
Therefore;
#5/(x + y) + 2/(x - y)=3#
#5(1/(x + y)) + 2(1/(x - y))=3#
#5a + 2b = 3 - - - eqn1#
Similarly..
#20/(x + y)-3/(x - y)= 1#
#20(1/(x + y))-3(1/(x - y)) = 1#
#20a - 3b = 1 - - - eqn2#
Using Elimination Method!
#5a + 2b = 3 - - - eqn1#
#20a - 3b = 1 - - - eqn2#
Multiply #eqn1# by #3# and #eqn2# by #2#
#3(5a + 2b = 3)#
#2(20a - 3b = 1)#
#15a + 6b = 9 - - - eqn3#
#40a - 6b = 2- - - eqn4#
Adding both #eqn3 and eqn4# together..
#(15a + 40a) + (6b + (-6b))= 9 + 2#
#55a + 6b - 6b = 11#
#55a = 11#
#a = 11/55#
#a = 1/5#
Substituting the value of #a# into #eqn1#
#5a + 2b = 3 - - - eqn1#
#5(1/5) + 2b = 3#
#cancel5(1/cancel5) + 2b = 3#
#1 + 2b= 3#
#2b = 3 - 1#
#2b = 2#
#b = 2/2#
#b = 1#
But;
#1/(x + y) = a and 1/(x - y) = b#
#a = 1/(x + y)#
#1/5 = 1/(x + y)#
Cross multiplying;
#1(x + y) = 1(5)#
#x + y = 5 - - - eqn5#
Similarly..
#b = 1/(x - y)#
#1 = 1/(x- y)#
#1/1 = 1/(x- y)#
Cross multiplying;
#1(x - y) = 1(1)#
#x - y = 1 - - - eqn6#
Solving simultaenously again..
#x + y = 5 - - - eqn5#
#x - y = 1 - - - eqn6#
Using Elimination Method!
Adding #eqn5 and eqn6# together;
#(x + x) + (y +(-y)) = 5 + 1#
#2x + y - y = 6#
#2x = 6#
#x = 6/2#
#x = 3#
Substituting the value of #x# into #eqn6#
#x + y = 5 - - - eqn5#
#3 + y = 5#
Collecting like terms;
#y = 5 - 3#
#y = 2#
Hence;
#x = 3 and y = 2#