How to solve x29x2dx with integration by parts?

Does it involve trig substitution?

1 Answer
May 2, 2018

the answer sin2θsin4θd(θ)=sin(4sin1(x))4sin1(x)32

Explanation:

show the steps

x29x2dx

suppose
a2=9anda=3

b2=1andb=1

x=absinθ=sinθ

dx=cosθd(θ)

sin2θcosθcosθd(θ)

sin2θcos2θd(θ)

sin2θ(1sin2θ)d(θ)

sin2θsin4θd(θ)

sin2θd(θ)=12[θcosθsinθ]

sin4θd(θ)=sin(4θ)8sin(2θ)+12θ32

sin2θsin4θd(θ)=sin(4θ)4θ32

θ=sin1x

sin2θsin4θd(θ)=sin(4sin1(x))4sin1(x)32