How to solve (sin^2(alpha+beta)-cos^2alpha-cos^2beta)/(sin(alpha+beta)-sin^2alpha-sin^2beta)sin2(α+β)cos2αcos2βsin(α+β)sin2αsin2β if alpha=pi/3α=π3 and beta=2pi/3β=2π3?

1 Answer
Jun 12, 2018

Given alpha=pi/3α=π3 and beta=(2pi)/3β=2π3

We have (beta+alpha)=piand (beta-alpha)=pi/3(β+α)=πand(βα)=π3

To evaluate

(sin^2(alpha+beta)-cos^2alpha-cos^2beta)/(sin(alpha+beta)-sin^2alpha-sin^2beta)sin2(α+β)cos2αcos2βsin(α+β)sin2αsin2β

=(sin^2(alpha+beta)-(cos^2alpha+cos^2beta))/(sin(alpha+beta)-(sin^2alpha+sin^2beta))=sin2(α+β)(cos2α+cos2β)sin(α+β)(sin2α+sin2β)

=(sin^2(alpha+beta)-(1-sin^2alpha+cos^2beta))/(sin(alpha+beta)-(sin^2alpha+1-cos^2beta))=sin2(α+β)(1sin2α+cos2β)sin(α+β)(sin2α+1cos2β)

=(sin^2(alpha+beta)-(1+cos^2beta-sin^2alpha))/(sin(alpha+beta)-(1-(cos^2beta-sin^2alpha)))=sin2(α+β)(1+cos2βsin2α)sin(α+β)(1(cos2βsin2α))

=(sin^2(alpha+beta)-(1+cos(beta+alpha)cos(beta-alpha)))/(sin(alpha+beta)-(1-cos(beta+alpha)cos(beta-alpha))=sin2(α+β)(1+cos(β+α)cos(βα))sin(α+β)(1cos(β+α)cos(βα))

=(sin^2(pi)-(1+cos(pi)cos(pi/3)))/(sin(pi)-(1-cos(pi)cos(pi/3))=sin2(π)(1+cos(π)cos(π3))sin(π)(1cos(π)cos(π3))

=(0-(1-1/2))/(0-(1+1/2))=1/3=0(112)0(1+12)=13

Formula used

cos(beta+alpha)cos(beta-alpha)cos(β+α)cos(βα)

=cos^2betacos^2alpha-sin^2betasin^2alpha=cos2βcos2αsin2βsin2α

=cos^2beta(1-sin^2alpha)-(1-cos^2beta)sin^2alpha=cos2β(1sin2α)(1cos2β)sin2α

=cos^2beta-sin^2alpha=cos2βsin2α

Alternative

(sin^2(alpha+beta)-cos^2alpha-cos^2beta)/(sin(alpha+beta)-sin^2alpha-sin^2beta)sin2(α+β)cos2αcos2βsin(α+β)sin2αsin2β

=(sin^2(pi)-cos^2(pi/3)-cos^2((2pi)/3))/(sin(pi)-sin^2(pi/3)-sin^2((2pi)/3))=sin2(π)cos2(π3)cos2(2π3)sin(π)sin2(π3)sin2(2π3)

=(0-1/4-1/4)/(0-3/4-3/4)=(1/2)/(3/2)=1/3=0141403434=1232=13