Given alpha=pi/3α=π3 and beta=(2pi)/3β=2π3
We have (beta+alpha)=piand (beta-alpha)=pi/3(β+α)=πand(β−α)=π3
To evaluate
(sin^2(alpha+beta)-cos^2alpha-cos^2beta)/(sin(alpha+beta)-sin^2alpha-sin^2beta)sin2(α+β)−cos2α−cos2βsin(α+β)−sin2α−sin2β
=(sin^2(alpha+beta)-(cos^2alpha+cos^2beta))/(sin(alpha+beta)-(sin^2alpha+sin^2beta))=sin2(α+β)−(cos2α+cos2β)sin(α+β)−(sin2α+sin2β)
=(sin^2(alpha+beta)-(1-sin^2alpha+cos^2beta))/(sin(alpha+beta)-(sin^2alpha+1-cos^2beta))=sin2(α+β)−(1−sin2α+cos2β)sin(α+β)−(sin2α+1−cos2β)
=(sin^2(alpha+beta)-(1+cos^2beta-sin^2alpha))/(sin(alpha+beta)-(1-(cos^2beta-sin^2alpha)))=sin2(α+β)−(1+cos2β−sin2α)sin(α+β)−(1−(cos2β−sin2α))
=(sin^2(alpha+beta)-(1+cos(beta+alpha)cos(beta-alpha)))/(sin(alpha+beta)-(1-cos(beta+alpha)cos(beta-alpha))=sin2(α+β)−(1+cos(β+α)cos(β−α))sin(α+β)−(1−cos(β+α)cos(β−α))
=(sin^2(pi)-(1+cos(pi)cos(pi/3)))/(sin(pi)-(1-cos(pi)cos(pi/3))=sin2(π)−(1+cos(π)cos(π3))sin(π)−(1−cos(π)cos(π3))
=(0-(1-1/2))/(0-(1+1/2))=1/3=0−(1−12)0−(1+12)=13
Formula used
cos(beta+alpha)cos(beta-alpha)cos(β+α)cos(β−α)
=cos^2betacos^2alpha-sin^2betasin^2alpha=cos2βcos2α−sin2βsin2α
=cos^2beta(1-sin^2alpha)-(1-cos^2beta)sin^2alpha=cos2β(1−sin2α)−(1−cos2β)sin2α
=cos^2beta-sin^2alpha=cos2β−sin2α
Alternative
(sin^2(alpha+beta)-cos^2alpha-cos^2beta)/(sin(alpha+beta)-sin^2alpha-sin^2beta)sin2(α+β)−cos2α−cos2βsin(α+β)−sin2α−sin2β
=(sin^2(pi)-cos^2(pi/3)-cos^2((2pi)/3))/(sin(pi)-sin^2(pi/3)-sin^2((2pi)/3))=sin2(π)−cos2(π3)−cos2(2π3)sin(π)−sin2(π3)−sin2(2π3)
=(0-1/4-1/4)/(0-3/4-3/4)=(1/2)/(3/2)=1/3=0−14−140−34−34=1232=13