How to solve ∫ (sin^4x)(cos^2x) dx ?

1 Answer
Sep 30, 2015

sin4xcos2xdx=116(xsin(4x)4sin3(2x)3)+c

Explanation:

sin4xcos2xdx=(sin2x)(sin2xcos2x)dx

=(12)(1cos2x)(sin2x2)2dx

We have

cos2x=12sin2x

sin2x=1cos2x2

and

sin2x=2sinxcosx

The integral becomes

=(12)(1cos2x)(sin2x2)2dx

=18((1cos2x)sin2(2x))dx

=18((sin2(2x)cos2xsin2(2x))dx

=18((12)2sin2(2x)dx122cos2xsin2(2x)dx)

=18((12)(1cos(4x))dx12sin2(2x)d(sin2x))

=116((1cos(4x))dxsin2(2x)d(sin2x))

dsin2xdx=2cos2x

d(sin2x)=2cos2xdx

=116(xsin(4x)4sin3(2x)3)+c