How to solve ∫ (sin^4x)(cos^2x) dx ?
1 Answer
Explanation:
∫sin4x⋅cos2xdx=∫(sin2x)⋅(sin2x⋅cos2x)dx
=∫(12)⋅(1−cos2x)⋅(sin2x2)2dx
We have
cos2x=1−2sin2x
sin2x=1−cos2x2
and
sin2x=2sinx⋅cosx
The integral becomes
=∫(12)⋅(1−cos2x)⋅(sin2x2)2dx
=18(∫(1−cos2x)⋅sin2(2x))dx
=18(∫(sin2(2x)−cos2x⋅sin2(2x))dx
=18(∫(12)⋅2sin2(2x)dx−∫12⋅2cos2x⋅sin2(2x)dx)
=18(∫(12)⋅(1−cos(4x))dx−∫12⋅sin2(2x)d(sin2x))
=116(∫(1−cos(4x))dx−∫sin2(2x)d(sin2x))
dsin2xdx=2cos2x
d(sin2x)=2cos2x⋅dx