How to solve tan ϑ + 1 = 0 in the domain 0 ≤ ϑ ≤ 3600?

1 Answer
Apr 29, 2017

Values of thetaθ in the interval 0 <= theta < 3600^@0θ<3600 are

{135^@,315^@,495^@,675^@,855^@,1035^@,1215^@,1395^@,1575^@,1755^@,1935^@,2115^@,2295^@,2475^@,2655^@,2835^@,3015^@,3195^@,3375^@,3555^@}{135,315,495,675,855,1035,1215,1395,1575,1755,1935,2115,2295,2475,2655,2835,3015,3195,3375,3555}

Explanation:

As tantheta+1=0tanθ+1=0, we have

tantheta=-1=tan((3pi)/4)=tan135^@tanθ=1=tan(3π4)=tan135

As tangent has a cycle of 180^@180

theta=180^@xxn+135^@θ=180×n+135, where nn is an integer

and values of thetaθ in the interval 0 <= theta < 3600^@0θ<3600 are

{135^@,315^@,495^@,675^@,855^@,1035^@,1215^@,1395^@,1575^@,1755^@,1935^@,2115^@,2295^@,2475^@,2655^@,2835^@,3015^@,3195^@,3375^@,3555^@}{135,315,495,675,855,1035,1215,1395,1575,1755,1935,2115,2295,2475,2655,2835,3015,3195,3375,3555}