How to solve the differential-integral equation?

phi'(t)=1/2int_0^t(t-sigma)^2phi(sigma)dsigma=-tphi(0)=1

1 Answer
Jun 28, 2018

phi(t) = 1 - t^2/2

Explanation:

  • {(phi'(t)=-t qquad triangle),(phi'(t) = 1/2 int_0^t(t-sigma)^2phi(sigma)dsigma qquad square):}

triangle implies phi(t) = - t^2 /2 + C

phi(0) = 1 implies phi(t) = 1 - t^2/2