How to solve this equation where z is a complex number #(2z+2i)^4=z^4#?

2 Answers
Mar 18, 2017

#{(z=-(2i)/(2+i)),(z=-(2i)/(2-i)),(z=-(2i)/3),(z=-2i):}#

Explanation:

#(2z+2i)^4-z^4=((2z+2i)^2+z^2)((2z+2i)^2-z^2)#

or

#(2z+2i+iz)(2z+2i-iz)(2z+2i+z)(2z+2i-z)=0#

so we have:

#{(2z+2i+iz=0),(2z+2i-iz=0),(2z+2i+z=0),(2z+2i-z=0):}#

or

#{(z=-(2i)/(2+i)),(z=-(2i)/(2-i)),(z=-(2i)/3),(z=-2i):}#

Mar 18, 2017

# z=-2i #
# z=-2/3i #
# z=2/5-4/5i #
# z=-2/5-4/5i #

Explanation:

We have:

# (2z+2i)^4 = z^4 #
# :. ((2z+2i)^2)^2 - (z^2)^2 = 0#

Which is the difference of two squares; and so we use:

#A^2-B^2-=(A+B)(A-B)#

to give:

# ((2z+2i)^2 - z^2) ((2z+2i)^2 + z^2) = 0#

The first factor is again the difference of two square and using #i^2=-1#, we can transform the second factor into the same:

# ((2z+2i)^2 - z^2) ((2z+2i)^2 - (iz)^2) = 0#

# :. ((2z+2i) - z) ((2z+2i) + z) ((2z+2i) - iz)((2z+2i) + iz) = 0#
# :. (z+2i) (3z+2i) (2z- iz+2i )(2z+ iz+2i ) = 0#

And so we have four solution:

(a) # z+2i = 0 => z=-2i #

(b) # 3z+2i = 0 => z=-2/3i #

(c) # 2z- iz+2i = 0 => z(2-i)=-2i #

# :. z = (-2i)/(2-i) * (2+i)/(2+i) = (-4i-2i^2)/(4-i^2)=2/5-4/5i#

(d) # 2z+ iz+2i = 0 => z(2+i)=-2i #

# :. z = (-2i)/(2+i) * (2-i)/(2-i) = (-4+2i^2)/(4-i^2)=-2/5-4/5i#

Which we can plot on the Argand diagram:
https://www.wolframalpha.com/input/?i=solve+(2z%2B2i)%5E4+%3D+z%5E4