How to solve this identity?
Prove that
#cosx + cosy + cosz + cos(x+ y+ z)=4cos((x+y)/2) * cos((y+z)/2) * cos((z+x)/2)#
Thank you!
Prove that
Thank you!
1 Answer
Dec 9, 2017
#cosx + cosy + cosz + cos(x+ y+ z)#
#=(cosx+cosy)+{cosz+cos(x+y+z)}#
#=2cdot cos((x+y)/2)cos((x-y)/2)+2cdot cos((x+y+2z)/2)cdot cos((x+y+z-z)/2)#
#=2cdot cos((x+y)/2)cos((x-y)/2)+2cdot cos((x+y+2z)/2)cdot cos((x+y)/2)#
#=2cdot cos((x+y)/2){cos((x-y)/2)+cos((x+y+2z)/2)}#
#=2cdot cos((x+y)/2){2cdotcos(((x-y)/2+(x+y+2z)/2)/2)cdotcos((-(x-y)/2+(x+y+z)/2)/2)}#
#=2cdot cos((x+y)/2){2cdotcos(((x-y)/2+(x+y+2z)/2)/2)cdotcos((-(x-y)/2+(x+y+z)/2)/2)}#
#=2cdot cos((x+y)/2){2cdotcos(((2(x+z))/2)/2)cdotcos(((2(y+z))/2)/2)}#
#=2cdotcos((x+y)/2)cdotcos((y+z)/2)cdotcos((x+z)/2)# Hope it helps...
Thank you...