How to solve this identity?

Prove that

cosx+cosy+cosz+cos(x+y+z)=4cos(x+y2)cos(y+z2)cos(z+x2)

Thank you!

1 Answer
Dec 9, 2017

cosx+cosy+cosz+cos(x+y+z)
=(cosx+cosy)+{cosz+cos(x+y+z)}
=2cos(x+y2)cos(xy2)+2cos(x+y+2z2)cos(x+y+zz2)
=2cos(x+y2)cos(xy2)+2cos(x+y+2z2)cos(x+y2)
=2cos(x+y2){cos(xy2)+cos(x+y+2z2)}
=2cos(x+y2)2cosxy2+x+y+2z22cos(xy2+x+y+z22)
=2cos(x+y2)2cosxy2+x+y+2z22cos(xy2+x+y+z22)
=2cos(x+y2)2cos2(x+z)22cos2(y+z)22
=2cos(x+y2)cos(y+z2)cos(x+z2)

Hope it helps...
Thank you...