How to solve this identity?
Prove that
cosx+cosy+cosz+cos(x+y+z)=4cos(x+y2)⋅cos(y+z2)⋅cos(z+x2)
Thank you!
Prove that
Thank you!
1 Answer
Dec 9, 2017
cosx+cosy+cosz+cos(x+y+z)
=(cosx+cosy)+{cosz+cos(x+y+z)}
=2⋅cos(x+y2)cos(x−y2)+2⋅cos(x+y+2z2)⋅cos(x+y+z−z2)
=2⋅cos(x+y2)cos(x−y2)+2⋅cos(x+y+2z2)⋅cos(x+y2)
=2⋅cos(x+y2){cos(x−y2)+cos(x+y+2z2)}
=2⋅cos(x+y2)⎧⎨⎩2⋅cos⎛⎝x−y2+x+y+2z22⎞⎠⋅cos(−x−y2+x+y+z22)⎫⎬⎭
=2⋅cos(x+y2)⎧⎨⎩2⋅cos⎛⎝x−y2+x+y+2z22⎞⎠⋅cos(−x−y2+x+y+z22)⎫⎬⎭
=2⋅cos(x+y2)⎧⎨⎩2⋅cos⎛⎝2(x+z)22⎞⎠⋅cos⎛⎝2(y+z)22⎞⎠⎫⎬⎭
=2⋅cos(x+y2)⋅cos(y+z2)⋅cos(x+z2) Hope it helps...
Thank you...