How to solve this identity? Thank you!

(tan(a+b)+tan(a-b))/(tan(a+b)-tan(a-b)) = (sin(2a))/(sin(2b))

1 Answer
Dec 10, 2017

We know that, tana+-tanb

=sina/cosa+-sinb/cosb

=(sinacosb+-cosasinb)/(cosacosb

=sin(a+-b)/(cosa*cosb)

So, (tana+tanb)/(tana-tanb)=sin(a+b)/sin(a-b)

LHS=(tan(a+b)+tan(a-b))/(tan(a+b)-tan(a-b)

=sin(a+b+a-b)/(sin(a+b-(a-b))

=sin(2a)/(sin(2b))=RHS