int(dx)/(1+x^4)^(1/4)
=int(dx)/(x(1+1/x^4)^(1/4))
=int(x^4dx)/(x^5(1+1/x^4)^(1/4))
Let (1+1/x^4)=u^4
Differentiating we get
-4/x^5dx=4u^3du
=>-cancel4/x^5dx=cancel4u^3du
So Intgral
I=-int(u^3du)/((u^4-1)u)
=-int(u^2du)/((u^2-1)(u^2+1))
=-1/2int(((u^2+1)+(u^2-1))du)/((u^2-1)(u^2+1))
=-1/2int(du)/(u^2-1)-1/2int(du)/(u^2+1)
=-1/4int(((u+1)-(u-1))du)/(u^2-1)-1/2int(du)/(u^2+1)
=-1/4int(du)/(u-1)+1/4int(du)/(u+1)-1/2(du)/(u^2+1)
=-1/4lnabs(u-1)+1/4lnabs(u+1)-1/2tan^-1u +c
Inserting u=(x^4+1)^(1/4)/x
I=-1/4lnabs((x^4+1)^(1/4)/x-1)+1/4lnabs((x^4+1)^(1/4)/x+1)-1/2tan^-1((x^4+1)^(1/4)/x)+c