How will you prove the following?

int int_RR (x^2y^2)/(x^2 +y^2) dxdy = (65pi)/16x2y2x2+y2dxdy=65π16,
where, R is the annulus between x^2+y^2=4x2+y2=4 and x^2+y^2=9x2+y2=9

1 Answer
May 17, 2018

See below

Explanation:

Write it in polar.

int int_R \ (x^2y^2)/(x^2 +y^2) \ color(blue)(dx\ dy)

equiv int_0^(2 pi) int_2^3 (r^2 cos^2 theta \ r^2 sin^2 theta )/(r^2) color(red)(\ r \ dr \ d theta)

=1/4 int_0^(2 pi) int_2^3 \ r^3 sin^2 (2 theta) \ dr \ d theta

=1/4 int_0^(2 pi) ( \ r^4/4)_2^3 sin^2 (2 theta) \ d theta

=1/4 int_0^(2 pi) ( \ r^4/4)_2^3 sin^2 (2 theta) \ d theta

=65/16 int_0^(2 pi) (1 - cos(4 theta))/2 \ d theta

=65/32 ( theta - 1/4 sin(4 theta) )_0^(2 pi)

=65/16 pi