How would you find a unit vector in the direction v = 6i-2j?

1 Answer
Oct 19, 2016

vec(hatv)=(sqrt10/10)(3veci-vecj)

Explanation:

A unit vector vec(hatx) in the direction of vecxis given by

vec(hatx)=vecx/|x|

In this case we have:

|v|=sqrt(6^2+2^2)=sqrt40=2sqrt10

So a unit vector in the direction ofvecv

vec(hatv)=(1/(2sqrt10))(6veci-2vecj)=(1/sqrt10)(3veci-vecj)

Rationalizing the denominator we end up with

vec(hatv)=(sqrt10/10)(3veci-vecj)