How you calculate this? int_0^1sqrtx/((x+3)sqrt(x+3)), Using substitution of sqrt(x/(x+3))=t.
1 Answer
Explanation:
Establishing a couple identities first from
t^2=x/(x+3)" "" "=>" "" "(1/(x+3)=t^2/x" "color(blue)((star)))
1/t^2=(x+3)/x=1+3/x
3/x=1/t^2-1=(1-t^2)/t^2
x/3=t^2/(1-t^2)
x=(3t^2)/(1-t^2)" "color(red)((star))
dx=(6t(1-t^2)-3t^2(-2t))/(1-t^2)^2dt=(6t)/(1-t^2)^2dt" "color(green)((star))
Combining
1/(x+3)=t^2/((3t^2)/(1-t^2))=(1-t^2)/3" "color(orange)((star))
Then we have the integral:
intsqrtx/((x+3)sqrt(x+3))dx=int1/(x+3)sqrt(x/(x+3))dx
=int(1-t^2)/3(t)(6t)/(1-t^2)^2dt=int(6t^2)/(3(1-t^2))dt
=2intt^2/(1-t^2)dt=2int(t^2-1+1)/(1-t^2)
=2int(-(1-t^2))/(1-t^2)dt-2int1/(t^2-1)dt
=-2intdt-2int1/((t+1)(t-1))dt
Partial fraction decomposition on the latter integral gives:
=-2t+int1/(t+1)dt-int1/(t-1)dt
=-2t+lnabs(t+1)-lnabs(t-1)
=-2sqrt(x/(x+3))+lnabs( ( sqrt(x/(x+3))+1) / ( sqrt(x/(x+3))-1) )
=-2sqrt(x/(x+3))+lnabs((sqrtx+sqrt(x+3))/(sqrtx-sqrt(x+3)))
Now applying the bounds:
int_0^1sqrtx/((x+3)sqrt(x+3))dx=(-2sqrt(x/(x+3))+lnabs((sqrtx+sqrt(x+3))/(sqrtx-sqrt(x+3))))|_0^1
=(-2sqrt(1/4)+lnabs((1+sqrt4)/(1-sqrt4)))-(2(0)+lnabs((0+sqrt3)/(0-sqrt3)))
=-2(1/2)+lnabs(-3)-(0+ln1)
=-1+ln3