How you calculate this? int_0^1sqrtx/((x+3)sqrt(x+3)), Using substitution of sqrt(x/(x+3))=t.

1 Answer
May 13, 2017

-1+ln3

Explanation:

Establishing a couple identities first from sqrt(x/(x+3))=t:

t^2=x/(x+3)" "" "=>" "" "(1/(x+3)=t^2/x" "color(blue)((star)))

1/t^2=(x+3)/x=1+3/x

3/x=1/t^2-1=(1-t^2)/t^2

x/3=t^2/(1-t^2)

x=(3t^2)/(1-t^2)" "color(red)((star))

dx=(6t(1-t^2)-3t^2(-2t))/(1-t^2)^2dt=(6t)/(1-t^2)^2dt" "color(green)((star))

Combining color(blue)((star)) with color(red)((star)):

1/(x+3)=t^2/((3t^2)/(1-t^2))=(1-t^2)/3" "color(orange)((star))

Then we have the integral:

intsqrtx/((x+3)sqrt(x+3))dx=int1/(x+3)sqrt(x/(x+3))dx

=int(1-t^2)/3(t)(6t)/(1-t^2)^2dt=int(6t^2)/(3(1-t^2))dt

=2intt^2/(1-t^2)dt=2int(t^2-1+1)/(1-t^2)

=2int(-(1-t^2))/(1-t^2)dt-2int1/(t^2-1)dt

=-2intdt-2int1/((t+1)(t-1))dt

Partial fraction decomposition on the latter integral gives:

=-2t+int1/(t+1)dt-int1/(t-1)dt

=-2t+lnabs(t+1)-lnabs(t-1)

=-2sqrt(x/(x+3))+lnabs( ( sqrt(x/(x+3))+1) / ( sqrt(x/(x+3))-1) )

=-2sqrt(x/(x+3))+lnabs((sqrtx+sqrt(x+3))/(sqrtx-sqrt(x+3)))

Now applying the bounds:

int_0^1sqrtx/((x+3)sqrt(x+3))dx=(-2sqrt(x/(x+3))+lnabs((sqrtx+sqrt(x+3))/(sqrtx-sqrt(x+3))))|_0^1

=(-2sqrt(1/4)+lnabs((1+sqrt4)/(1-sqrt4)))-(2(0)+lnabs((0+sqrt3)/(0-sqrt3)))

=-2(1/2)+lnabs(-3)-(0+ln1)

=-1+ln3