How you solve this ?lim_(n->oo)(5^(n)n!)/(2^(n)n^n) Calculus Limits Determining Limits Algebraically 1 Answer Cesareo R. Mar 20, 2017 lim_(n->oo)(5^(n)n!)/(2^(n)n^n)=0 Explanation: Using Stirling assymptotic approximation n! approx sqrt(2pi n)(n/e)^n we have (n!)/n^n approx sqrt(2pi n)e^(-n) so lim_(n->oo)(5^(n)n!)/(2^(n)n^n)=(5/2)^n sqrt(2pi n)e^(-n) = (5/(2e))^n sqrt(2pi n) = a^n sqrt(2pi n) with a < 1 then lim_(n->oo)(5^(n)n!)/(2^(n)n^n)=0 Answer link Related questions How do you find the limit lim_(x->5)(x^2-6x+5)/(x^2-25) ? How do you find the limit lim_(x->3^+)|3-x|/(x^2-2x-3) ? How do you find the limit lim_(x->4)(x^3-64)/(x^2-8x+16) ? How do you find the limit lim_(x->2)(x^2+x-6)/(x-2) ? How do you find the limit lim_(x->-4)(x^2+5x+4)/(x^2+3x-4) ? How do you find the limit lim_(t->-3)(t^2-9)/(2t^2+7t+3) ? How do you find the limit lim_(h->0)((4+h)^2-16)/h ? How do you find the limit lim_(h->0)((2+h)^3-8)/h ? How do you find the limit lim_(x->9)(9-x)/(3-sqrt(x)) ? How do you find the limit lim_(h->0)(sqrt(1+h)-1)/h ? See all questions in Determining Limits Algebraically Impact of this question 1376 views around the world You can reuse this answer Creative Commons License