How you solve this ?lim_(n->oo)(5^(n)n!)/(2^(n)n^n)

1 Answer
Mar 20, 2017

lim_(n->oo)(5^(n)n!)/(2^(n)n^n)=0

Explanation:

Using Stirling assymptotic approximation

n! approx sqrt(2pi n)(n/e)^n we have

(n!)/n^n approx sqrt(2pi n)e^(-n) so

lim_(n->oo)(5^(n)n!)/(2^(n)n^n)=(5/2)^n sqrt(2pi n)e^(-n) = (5/(2e))^n sqrt(2pi n) = a^n sqrt(2pi n) with a < 1

then

lim_(n->oo)(5^(n)n!)/(2^(n)n^n)=0