Find j(x). What type of wave this is describing?
1 Answer
The probability current,
Well, if we want to show that
j(x) is a constant w.r.t.x , we just need
(dj(x))/(dx) = 0 .So... we first find the form of
(dj(x))/(dx) .
(dj(x))/(dx) = d/(dx)[(iℏ)/(2m)(psi (dpsi^"*")/(dx) - psi^"*" (dpsi)/(dx))]
= (iℏ)/(2m)(psi (d^2psi^"*")/(dx^2) + cancel((dpsi)/(dx) (dpsi^"*")/(dx)) - psi^"*" (d^2psi)/(dx^2) - cancel((dpsi^"*")/(dx)(dpsi)/(dx))) The time-independent Schrodinger equation is
-ℏ^2/(2m) (d^2psi)/(dx^2) + V(x)psi = Epsi so we have:
(d^2psi)/(dx^2) = -(2m(E-V(x)))/(ℏ^2)psi
(d^2psi^"*")/(dx^2) = -(2m(E-V(x)))/(ℏ^2)psi^"*" Therefore:
(dj(x))/(dx) = (iℏ)/(2m)(psi [-(2m(E-V(x)))/(ℏ^2)psi^"*"] - psi^"*" [-(2m(E-V(x)))/(ℏ^2)psi])
= -(iℏ)/(2m)((2m(E-V(x)))/(ℏ^2)psipsi^"*" - (2m(E-V(x)))/(ℏ^2)psi^"*"psi) Obviously,
psi commutes withpsi^"*" , so
color(blue)((dj(x))/(dx)) = -(iℏ)/(2m) cdot (2m(E-V(x)))/(ℏ^2) cdot (psi^"*"psi - psi^"*"psi)
= color(blue)(0) Thus,
j(x) is a constant w.r.t.x .
We consider the plane wave
psi(x) = Ae^(ikx) + Be^(-ikx) , withk being the usual wave numberk = p/ℏ .It has some probability of reflection or transmission (we do not know what, until we know the properties of
V as a function ofx ), and its derivatives are:
(dpsi)/(dx) = ikAe^(ikx) - ikBe^(-ikx)
(dpsi^"*")/(dx) = -ikA^"*"e^(-ikx) + ikB^"*"e^(ikx) Therefore, for this
psi(x) :
color(blue)(j_1(x)) = (iℏ)/(2m)[(Ae^(ikx) + Be^(-ikx))(-ikA^"*"e^(-ikx) + ikB^"*"e^(ikx)) - (A^"*"e^(-ikx) + B^"*"e^(ikx))(ikAe^(ikx) - ikBe^(-ikx))]
= (iℏ)/(2m)[-ikA A^"*" + cancel(ikAB^"*"e^(2ikx)) - cancel(ikBA^"*"e^(-2ikx)) + ikBB^"*" - ikA A^"*" + cancel(ikBA^"*"e^(-2ikx)) - cancel(ikAB^"*"e^(2ikx)) + ikBB^"*"]
= (iℏ)/(cancel(2)m)[cancel(2)ik(B B^"*" - A A^"*")]
= color(blue)((ℏk)/m(A A^"*" - B B^"*")) For
psi(x) = Fe^(ikx) ,
(dpsi)/(dx) = ikFe^(ikx)
(dpsi^"*")/(dx) = -ikF^"*"e^(-ikx) Thus:
color(blue)(j_2(x)) = (iℏ)/(2m)[Fcancel(e^(ikx))(-ikF^"*"cancel(e^(-ikx))) - F^"*"cancel(e^(-ikx))(ikFcancel(e^(ikx)))]
= (iℏ)/(2m)[-ikF F^"*" - ikF F^"*"]
= (iℏ)/(cancel(2)m)[-cancel(2)ikF F^"*"]
= color(blue)((ℏk)/(m)F F^"*") The terms
A A^"*" , etc. indicate the probability of the event occurring corresponding to itse^(pmikx) term. Of course, this means that
- the first plane wave has some finite probability of moving forward (
e^(ikx) ) or moving backward (e^(-ikx) ).- the second plane wave obviously has a
100% probability of moving forward (e^(ikx ) (how else would it move?).
This is a pretty roundabout way of simply saying to place a barrier of arbitrary height in front of the particle of width
2a centered atx = 0 :
V(x) = {(0, |x| > a),(V_0, -a <= x <= a):}
![]()
Here we define
k on the left of the barrier andk' on the right of the barrier (k ne k' ). That is, we define the wave functions for the left and right of the barrier as:
psi_L(x) = Ae^(ikx) + Be^(-ikx)
psi_R(x) = Fe^(ik'x) where
psi_R(x) necessarily has noGe^(-ik'x) term so that the particle does not double back.Therefore, what we got in
(ii) is now specified:
j_L(x) = (ℏk)/m(A A^"*" - B B^"*") = "const"
j_R(x) = (ℏk')/mFF^"*" = "const" From
(i) , sincej(x) is a constant w.r.t.x (which we see here)j_L(x) = j_R(x) = "same const" .The reflection coefficient is defined as
R = (B B^"*")/(A A^"*") And the transmission coefficient is defined as
T = (k')/(k)(F F^"*")/(A A^"*") First, we can say that
overbrace(cancel((ℏ)/m)k(A A^"*" - B B^"*"))^(j_L(x)) = overbrace(cancel((ℏ)/m)k'FF^"*")^(j_R(x)) or that
-(A A^"*" - B B^"*") = B B^"*" - A A^"*" = -(k')/k FF^"*" Therefore, we use our results to find:
color(blue)(R + T) = (B B^"*")/(A A^"*") + (k')/(k)(F F^"*")/(A A^"*")
= (B B^"*" + A A^"*" - A A^"*")/(A A^"*") + (k')/(k)(F F^"*")/(A A^"*")
= 1 + (B B^"*" - A A^"*")/(A A^"*") + (k')/(k)(F F^"*")/(A A^"*")
= 1 - cancel((k')/k (FF^"*")/(A A^"*") + (k')/(k)(F F^"*")/(A A^"*"))
= color(blue)(1) This result should make sense.
Obviously, a particle can only reflect or transmit through a potential barrier. There is nothing else it can physically do, so this total probability should be
100% .