I don't understand what I did wrong in my process? The question is: Find the point on the plane 6x − y + 6z = 60 nearest the origin. The answer is: < 360/73, -60/73, 360/73 > I got: < 6(360/73), -1(360/73), 6(360/73) >
g(x)=6x-y+6z=60
gradg(x)=<6,-1,6>
D^2=(x-0)^2+(y-0)^2+(z-0)^2
6x-6z-60=y
D^2(x,z)=x^2+(6x+6z-60)^2+z^2
D^2(x,z)=37x^2+72xz-720x-720z+3600+37z^2
gradD^2(x,z)=<74x+72z-720,74z+72x-720>
gradD^2(x,z)=<37x+36z-360,37z+36x-360>
a) 37x+36z-360=0
b) 37z+36x-360=0
a)-b) = 37x-36x+36z-37z-360+360=0
a)-b) = x-z=0 -> x=z
x=z, -> 37(x)+36x-360=0
x=360/73
< x,y,z > * <6,-1,6> = <6(360/73),-1(360/73),6(360/73)>
1 Answer
See below
Explanation:
You're using a Lagrange multiplier:
Condition:
To be optimised:
nabla f = lambda nabla g