Using Indices
#(1/125)^(a^2 + 4ab) = (root(3) 625)^(3a^2 - 10ab)#
Recall that #rArr 1/a = a^-1#
#(125^-1)^(a^2 + 4ab) = (625^(1/3))^(3a^2 - 10ab)#
#(5^(3(-1)))^(a^2 + 4ab) = (5^(4(1/3)))^(3a^2 - 10ab)#
#5^(-3(a^2 + 4ab)) = 5^(4/3(3a^2 - 10ab))#
#cancel5^(-3(a^2 + 4ab)) = cancel5^(4/3(3a^2 - 10ab))#
#-3(a^2 + 4ab) = 4/3(3a^2 - 10ab)#
#-3a^2 - 12ab = (12a^2)/3 - (40ab)/3#
#-3a^2 - 12ab = (12a^2 - 40ab)/3#
Cross Multiply
#3(-3a^2 - 12ab) = 12a^2 - 40ab#
#-9a^2 - 36ab = 12a^2 - 40ab#
Collect Like Terms
#-9a^2 - 12a^2 = - 40ab + 36ab#
#-21a^2 = - 4ab#
#cancel-21a^2 = cancel- 4ab#
#21a^2 = 4ab#
Since we are looking for #color(white)(x) a/b#
Divide both sides by #ab#
#(21cancel(a^2)^1)/(cancelab) = (4cancel(ab))/(cancel(ab))#
#rArr (21a)/b = 4#
Divide both sides by #21#
#rArr ((21a)/b)/21 = 4/21#
#rArr ((cancel21a)/b) xx 1/cancel21 = 4/21#
#rArr a/b = 4/21 -> Answer#
Hence Option. A is the final Answer..