Using Indices
(1/125)^(a^2 + 4ab) = (root(3) 625)^(3a^2 - 10ab)
Recall that rArr 1/a = a^-1
(125^-1)^(a^2 + 4ab) = (625^(1/3))^(3a^2 - 10ab)
(5^(3(-1)))^(a^2 + 4ab) = (5^(4(1/3)))^(3a^2 - 10ab)
5^(-3(a^2 + 4ab)) = 5^(4/3(3a^2 - 10ab))
cancel5^(-3(a^2 + 4ab)) = cancel5^(4/3(3a^2 - 10ab))
-3(a^2 + 4ab) = 4/3(3a^2 - 10ab)
-3a^2 - 12ab = (12a^2)/3 - (40ab)/3
-3a^2 - 12ab = (12a^2 - 40ab)/3
Cross Multiply
3(-3a^2 - 12ab) = 12a^2 - 40ab
-9a^2 - 36ab = 12a^2 - 40ab
Collect Like Terms
-9a^2 - 12a^2 = - 40ab + 36ab
-21a^2 = - 4ab
cancel-21a^2 = cancel- 4ab
21a^2 = 4ab
Since we are looking for color(white)(x) a/b
Divide both sides by ab
(21cancel(a^2)^1)/(cancelab) = (4cancel(ab))/(cancel(ab))
rArr (21a)/b = 4
Divide both sides by 21
rArr ((21a)/b)/21 = 4/21
rArr ((cancel21a)/b) xx 1/cancel21 = 4/21
rArr a/b = 4/21 -> Answer
Hence Option. A is the final Answer..