If (1/125)^(a^2 + 4ab) = (3sqrt625)^(3a^2 - 10ab)(1125)a2+4ab=(3625)3a210ab and if a and baandb do not equal 0.. a/b = ........ ?

2 Answers
Aug 22, 2017

See below.

Explanation:

Applying log to both sides

(a^2 + 4 a b) Log_e(1/125) - (3 a^2 - 10 a b) Log_e(3 xx25)=0

Now solving for a we get at

{(a = 0),(a =(2 b Log_e(3^5 5^4))/(3 Log_e(3 xx 5^3)) ):}

and finally

a/b = (2 log_e(3^5 5^4))/(3 log_e(3 xx 5^3)) approx 1.34199

Aug 24, 2017

a/b = 4/21

Explanation:

Using Indices

(1/125)^(a^2 + 4ab) = (root(3) 625)^(3a^2 - 10ab)

Recall that rArr 1/a = a^-1

(125^-1)^(a^2 + 4ab) = (625^(1/3))^(3a^2 - 10ab)

(5^(3(-1)))^(a^2 + 4ab) = (5^(4(1/3)))^(3a^2 - 10ab)

5^(-3(a^2 + 4ab)) = 5^(4/3(3a^2 - 10ab))

cancel5^(-3(a^2 + 4ab)) = cancel5^(4/3(3a^2 - 10ab))

-3(a^2 + 4ab) = 4/3(3a^2 - 10ab)

-3a^2 - 12ab = (12a^2)/3 - (40ab)/3

-3a^2 - 12ab = (12a^2 - 40ab)/3

Cross Multiply

3(-3a^2 - 12ab) = 12a^2 - 40ab

-9a^2 - 36ab = 12a^2 - 40ab

Collect Like Terms

-9a^2 - 12a^2 = - 40ab + 36ab

-21a^2 = - 4ab

cancel-21a^2 = cancel- 4ab

21a^2 = 4ab

Since we are looking for color(white)(x) a/b

Divide both sides by ab

(21cancel(a^2)^1)/(cancelab) = (4cancel(ab))/(cancel(ab))

rArr (21a)/b = 4

Divide both sides by 21

rArr ((21a)/b)/21 = 4/21

rArr ((cancel21a)/b) xx 1/cancel21 = 4/21

rArr a/b = 4/21 -> Answer

Hence Option. A is the final Answer..