If #(1/125)^(a^2 + 4ab) = (3sqrt625)^(3a^2 - 10ab)# and if #a and b# do not equal 0.. #a/b = ........# ?

2 Answers
Aug 22, 2017

See below.

Explanation:

Applying #log# to both sides

#(a^2 + 4 a b) Log_e(1/125) - (3 a^2 - 10 a b) Log_e(3 xx25)=0#

Now solving for #a# we get at

#{(a = 0),(a =(2 b Log_e(3^5 5^4))/(3 Log_e(3 xx 5^3)) ):}#

and finally

#a/b = (2 log_e(3^5 5^4))/(3 log_e(3 xx 5^3)) approx 1.34199 #

Aug 24, 2017

#a/b = 4/21#

Explanation:

Using Indices

#(1/125)^(a^2 + 4ab) = (root(3) 625)^(3a^2 - 10ab)#

Recall that #rArr 1/a = a^-1#

#(125^-1)^(a^2 + 4ab) = (625^(1/3))^(3a^2 - 10ab)#

#(5^(3(-1)))^(a^2 + 4ab) = (5^(4(1/3)))^(3a^2 - 10ab)#

#5^(-3(a^2 + 4ab)) = 5^(4/3(3a^2 - 10ab))#

#cancel5^(-3(a^2 + 4ab)) = cancel5^(4/3(3a^2 - 10ab))#

#-3(a^2 + 4ab) = 4/3(3a^2 - 10ab)#

#-3a^2 - 12ab = (12a^2)/3 - (40ab)/3#

#-3a^2 - 12ab = (12a^2 - 40ab)/3#

Cross Multiply

#3(-3a^2 - 12ab) = 12a^2 - 40ab#

#-9a^2 - 36ab = 12a^2 - 40ab#

Collect Like Terms

#-9a^2 - 12a^2 = - 40ab + 36ab#

#-21a^2 = - 4ab#

#cancel-21a^2 = cancel- 4ab#

#21a^2 = 4ab#

Since we are looking for #color(white)(x) a/b#

Divide both sides by #ab#

#(21cancel(a^2)^1)/(cancelab) = (4cancel(ab))/(cancel(ab))#

#rArr (21a)/b = 4#

Divide both sides by #21#

#rArr ((21a)/b)/21 = 4/21#

#rArr ((cancel21a)/b) xx 1/cancel21 = 4/21#

#rArr a/b = 4/21 -> Answer#

Hence Option. A is the final Answer..