If 2A=tan^-1 (4/3), find the value of tan(A-arccos-1/2)?

1 Answer
Jun 21, 2017

" The Reqd. Value="8+5sqrt3. The Reqd. Value=8+53.

Explanation:

In this Solution, we assume that, as functions tan^-1=arc tan.tan1=arctan.

Let us first find, arc cos(-1/2).arccos(12).

Recall the following Definition of arc cosarccos function :

arc cos x=theta, |x| <=1 iff costheta=x, theta in [0,pi].arccosx=θ,|x|1cosθ=x,θ[0,π].

We have, cos(2pi/3)=cos (pi-pi/3)=-cos(pi/3)=-1/2, &, (2pi/3) in [0,pi].cos(2π3)=cos(ππ3)=cos(π3)=12,&,(2π3)[0,π].

rArr arc cos(-1/2)=2pi/3..........."[Defn.]"

Therefore, the Reqd. Value=tan(A-arc cos(-1/2)),

=tan(A-2pi/3),

:." the Reqd. Value="(tanA-tan(2pi/3))/(1+tanAtan(2pi/3))........(ast).

Here, tan(2pi/3)=tan(pi-pi/3)=-tan(pi/3)=-sqrt3.....(ast_1).

Given that, 2A=tan^-1(4/3) rArr tan2A=4/3, &, 2A in (-pi/2,pi/2).

But, tan2A >0, 2A in (0,pi/2).

because, tan2A=(2tanA)/(1-tan^2A)=(2t)/(1-t^2), t=tanA,

:. (2t)/(1-t^2)=4/3 :. 2-2t^2=3t :. 2t^2+3t-2=0.

:. (t+2)(2t-1)=0 :. t=-2, or, t=1/2.

Since, 2A in (0,pi/2), t=tanA > 0 rArr t=1/2....(ast_2).

Utilising (ast_1) and (ast_2)" in "(ast), we have,

" The Reqd. Value="(1/2-(-sqrt3))/(1+(1/2)(-sqrt3))=(1+2sqrt3)/(2-sqrt3)

=(1+2sqrt3)(2+sqrt3)=8+5sqrt3.

Enjoy Maths.!