If 5^(10x)=4900 and 2^(sqrty)=25, what is the value of ((5^((x-1)))^5)/4^(-sqrty)?
1 Answer
Mar 4, 2017
Explanation:
Given that:
5^(10x) = 4900
2^(sqrt(y)) = 25
Then:
(5^(x-1))^5 = 5^(5(x-1))
color(white)((5^(x-1))^5) = 5^(5x-5)
color(white)((5^(x-1))^5) = 5^(5x)*5^(-5)
color(white)((5^(x-1))^5) = 5^(1/2(10x))*5^(-5)
color(white)((5^(x-1))^5) = (5^(10x))^(1/2)*5^(-5)
color(white)((5^(x-1))^5) = 4900^(1/2)*5^(-5)
color(white)((5^(x-1))^5) = 70*5^(-5)
color(white)((5^(x-1))^5) = 14*5^(-4)
4^(-sqrt(y)) = (2^2)^(-sqrt(y))
color(white)(4^(-sqrt(y))) = 2^(-2sqrt(y))
color(white)(4^(-sqrt(y))) = (2^sqrt(y))^(-2)
color(white)(4^(-sqrt(y))) = 25^(-2)
color(white)(4^(-sqrt(y))) = 5^(-4)
So:
(5^(x-1))^5/4^(-sqrt(y)) = (14*color(red)(cancel(color(black)(5^(-4)))))/color(red)(cancel(color(black)(5^(-4)))) = 14