If A = <1 ,6 ,-8 >A=<1,6,8>, B = <-9 ,4 ,1 >B=<9,4,1> and C=A-BC=AB, what is the angle between A and C?

1 Answer
Apr 28, 2018

theta = arccos(94/sqrt{18685})approx 46.55^circ θ=arccos(9418685)46.55

Explanation:

A cdot C = |A||C| cos theta AC=|A||C|cosθ

The dot product divided by the magnitudes gives the cosine of the angle.

cos theta = { A cdot C}/{|A||C|} cosθ=AC|A||C|

C = A - B = (1,6,-8) -(-9,4,1) = (10, 2, -9)C=AB=(1,6,8)(9,4,1)=(10,2,9)

cos theta = {(1,6,-8) cdot (10, 2, -9 ) } / {|((1,6,-8))||((10, 2, -9 )) |}

cos theta = {1(10) + 6(2) + -8(-9) }/{ sqrt{ (1^2+6^2+8^2 ) (10^2+2^2+9^2 ) } }

cos theta = 94/sqrt(18685)

theta = arccos(94/sqrt{18685})

theta approx 46.55^circ