If A = <2 ,1 ,6 >A=<2,1,6>, B = <5 ,1 ,7 >B=<5,1,7> and C=A-BC=AB, what is the angle between A and C?

1 Answer
Mar 11, 2016

alpha~=17^oα17o

Explanation:

A= <2,1,6> => ||A||=sqrt(2^2+1^2+6^2)=sqrt41A=<2,1,6>||A||=22+12+62=41
B= <5,1,7> =>||B||=sqrt(5^2+1^2+7^2)=sqrt75B=<5,1,7>||B||=52+12+72=75
"find A.B"find A.B
A.B=A_x*B_x+A_y*B_y+A_z*B_zA.B=AxBx+AyBy+AzBz
A.B=2*5+1*1+6*7" "A.B=10+1+42=53A.B=25+11+67 A.B=10+1+42=53
A*B" is determined by :"AB is determined by :
A*B=||A||*||B||*cos alphaAB=||A||||B||cosα
53=sqrt41*sqrt76*cos alpha53=4176cosα
53=sqrt(41*75)*cos alpha53=4175cosα
cos alpha=53/sqrt3075cosα=533075
cos alpha=53/(55,45)cosα=5355,45
cos alpha=0,955816cosα=0,955816
alpha~=17^oα17o