If A = <2 ,1 ,8 >A=<2,1,8>, B = <5 ,7 ,3 >B=<5,7,3> and C=A-BC=AB, what is the angle between A and C?

1 Answer
Oct 24, 2016

THe angle is 66.2º

Explanation:

The dot product betwwen 2 vectors is
〈veca〉.〈vecc〉=∥〈veca〉∥∥〈vecc〉∥cos(veca,vecc)a.c=accos(a,c)

cos(veca,vecc)=(〈veca〉 .〈 vecc 〉 ) /(∥〈veca〉∥∥〈vecc〉∥)cos(a,c)=a.cac

If 〈veca〉=〈a_1,a_2,a_3〉a=a1,a2,a3
and 〈vecc〉=〈c_1,c_2,c_3〉c=c1,c2,c3

The dot product is 〈veca〉.〈vecc〉=a_1c_1+a_2c_2+a_3c_3a.c=a1c1+a2c2+a3c3

〈vecc〉=〈veca〉-〈vecb〉 =〈2,1,8〉-〈5,7,3〉 =〈-3,-6,5〉c=ab=2,1,85,7,3=3,6,5

〈veca〉.〈vecc〉=-6+(-6)+40=28a.c=6+(6)+40=28

∥〈veca〉∥=sqrt(a_1^2+a_2^2+a_3^2)a=a21+a22+a23

∥〈veca〉∥=sqrt(4+1+64)=sqrt69a=4+1+64=69

∥〈vecc〉∥=sqrt(9+36+25)=sqrt70c=9+36+25=70
let cos(veca,vecc)=costhetacos(a,c)=cosθ
so the angle
costheta=28/((sqrt69)(sqrt70))=0.403cosθ=28(69)(70)=0.403
theta =66.2º