The dot product is
A.B= <-2,3,-4> . <-9,4,8> = (-2*-9)+(3*4)+(-4*8) =18+12-32= -2A.B=<−2,3,−4>.<−9,4,8>=(−2⋅−9)+(3⋅4)+(−4⋅8)=18+12−32=−2
The modulus of vecA→A is
=||vecA|| =|| <-2,3,-4> || =sqrt((-2)^2+(3)^3+(-4)^2)=sqrt(4+9+16)=sqrt(29)=∣∣∣∣∣∣→A∣∣∣∣∣∣=||<−2,3,−4>||=√(−2)2+(3)3+(−4)2=√4+9+16=√29
The modulus of vecB→B is
=||vecB|| =|| <-9,4,8> || =sqrt((-9)^2+(4)^3+(8)^2)=sqrt(81+16+64)=sqrt(161)=∣∣∣∣∣∣→B∣∣∣∣∣∣=||<−9,4,8>||=√(−9)2+(4)3+(8)2=√81+16+64=√161
Therefore,
A.B-||vecA||*||vecB||=-2-sqrt29*sqrt161=-70.3A.B−∣∣∣∣∣∣→A∣∣∣∣∣∣⋅∣∣∣∣∣∣→B∣∣∣∣∣∣=−2−√29⋅√161=−70.3