If A= <2 ,-3 ,9 >A=<2,3,9> and B= <0 , 3, 7 >B=<0,3,7>, what is A*B -||A|| ||B||AB||A||||B||?

1 Answer
Jun 28, 2018

bb ul A * bb ul B - || bb ul A || \ || bb ul B || = 54 - sqrt(94)sqrt(58)

Explanation:

We have:

bb ul A = << 2, -3, 9 >> and bb ul B = << 0, 3, 7 >>

And so we compute the Scalar (or dot product):

bb ul A * bb ul B= << 2, -3, 9 >> * << 0, 3, 7 >>

\ \ \ \ \ \ \ \ \ = (2)(0) + (-3)(3) + (9)(7)

\ \ \ \ \ \ \ \ \ = 0 - 9 + 63

\ \ \ \ \ \ \ \ \ = 54

And we compute the vector norms (or magnitudes):

|| bb ul A || = || << 2, -3, 9 >> ||

\ \ \ \ \ \ \ = sqrt( << 2, -3, 9 >> * << 2, -3, 9 >> )

\ \ \ \ \ \ \ = sqrt( (2)^2+ (-3)^2 + (9)^2 )

\ \ \ \ \ \ \ = sqrt( 4 + 9 + 81)

\ \ \ \ \ \ \ = sqrt( 94 )

Similarly,

|| bb ul B || = || << 0, 3, 7 >> ||

\ \ \ \ \ \ \ = sqrt( << 0, 3, 7 >> * << 0, 3, 7 >> )

\ \ \ \ \ \ \ = sqrt( (0)^2+ (3)^2 + (7)^2 )

\ \ \ \ \ \ \ = sqrt( 0+9+49)

\ \ \ \ \ \ \ = sqrt( 58 )

So that:

bb ul A * bb ul B - || bb ul A || \ || bb ul B || = 54 - sqrt(94)sqrt(58)