If A= <2 ,-3 ,9 >A=<2,−3,9> and B= <0 , 3, 7 >B=<0,3,7>, what is A*B -||A|| ||B||A⋅B−||A||||B||?
1 Answer
bb ul A * bb ul B - || bb ul A || \ || bb ul B || = 54 - sqrt(94)sqrt(58)
Explanation:
We have:
bb ul A = << 2, -3, 9 >> andbb ul B = << 0, 3, 7 >>
And so we compute the Scalar (or dot product):
bb ul A * bb ul B= << 2, -3, 9 >> * << 0, 3, 7 >>
\ \ \ \ \ \ \ \ \ = (2)(0) + (-3)(3) + (9)(7)
\ \ \ \ \ \ \ \ \ = 0 - 9 + 63
\ \ \ \ \ \ \ \ \ = 54
And we compute the vector norms (or magnitudes):
|| bb ul A || = || << 2, -3, 9 >> ||
\ \ \ \ \ \ \ = sqrt( << 2, -3, 9 >> * << 2, -3, 9 >> )
\ \ \ \ \ \ \ = sqrt( (2)^2+ (-3)^2 + (9)^2 )
\ \ \ \ \ \ \ = sqrt( 4 + 9 + 81)
\ \ \ \ \ \ \ = sqrt( 94 )
Similarly,
|| bb ul B || = || << 0, 3, 7 >> ||
\ \ \ \ \ \ \ = sqrt( << 0, 3, 7 >> * << 0, 3, 7 >> )
\ \ \ \ \ \ \ = sqrt( (0)^2+ (3)^2 + (7)^2 )
\ \ \ \ \ \ \ = sqrt( 0+9+49)
\ \ \ \ \ \ \ = sqrt( 58 )
So that:
bb ul A * bb ul B - || bb ul A || \ || bb ul B || = 54 - sqrt(94)sqrt(58)