If A= <2 ,-3 ,9 > and B= <-1, 3, 7 >, what is A*B -||A|| ||B||?
1 Answer
bb(ul(A)) * bb(ul(B)) - || bb(ul(A)) || \ || bb(ul(B)) || = 52 - sqrt(5546)
" " = -22.4714710...
Explanation:
We have:
bb(ul(A)) = <<2 ,-3 ,9 >>
bb(ul(B)) = << -1, 3, 7 >>
So then we can calculate the scalar product:
bb(ul(A)) * bb(ul(B)) = <<2 ,-3 ,9 >> * << -1, 3, 7 >>
" " = (2)(-1) + (-3)(3) + (9)(7)
" " = -2-9+63
" " = 52
And next the metric norms:
|| bb(ul(A)) || = sqrt( (2)^2+(-3)^2+(9)^2 )
" " = sqrt( 4+9+81 )
" " = sqrt( 94 )
|| bb(ul(B)) || = sqrt( (-1)^2+(3)^2+(7)^2 )
" " = sqrt( 1+9+49 )
" " = sqrt( 59 )
So the the result we require is:
bb(ul(A)) * bb(ul(B)) - || bb(ul(A)) || \ || bb(ul(B)) || = 52 - sqrt(94)sqrt(59)
" " = 52 - sqrt(5546)
" " = -22.4714710...