If A = <2 ,4 ,-3 >A=<2,4,3>, B = <3 ,1 ,-5 >B=<3,1,5> and C=A-BC=AB, what is the angle between A and C?

1 Answer
Dec 21, 2016

The angle is =78.5º

Explanation:

Let's calculate vecC

vecC=vecA-vecB=〈2,4,-3〉-〈3,1,-5〉=〈-1,3.2〉

The angle between vecA and vecC is obtained from the dot product definition

vecA.vecC=∥vecA ∥* ∥vecC∥* costheta

The dot product is =〈-1,3.2〉.〈2,4,-3〉=(-2+12-6)=4

The modulus of vecA is =∥vecA∥=∥〈2,4,-3〉∥=sqrt(4+16+9)=sqrt29

The modulus of vecC is =∥vecc∥=∥〈-1,3,2〉∥=sqrt(1+9+4)=sqrt14

Therefore,

costheta=(vecA.vecC)/(∥vecA ∥* ∥vecC∥)=4/(sqrt29sqrt14)=0.1985

theta=78.5º