If A = <2 ,4 ,-3 >A=<2,4,3>, B = <3 ,4 ,1 >B=<3,4,1> and C=A-BC=AB, what is the angle between A and C?

1 Answer
Mar 24, 2018

The angle between vecA and vecCAandC is 63.23^063.230

Explanation:

vec C=vecA- vecB = (< 2,4,-3 >) - (< 3,4,1 >)C=AB=(<2,4,3>)(<3,4,1>)

=(< (2-3),(4-4),(-3-1) >) =< -1,0,-4 >=(<(23),(44),(31)>)=<1,0,4>

vecA =<2,4,-3> and vecC =<-1,0,-4> A=<2,4,3>andC=<1,0,4> Let thetaθ be the

angle between them ; then we know

cos theta= (vecA*vecC)/(||vecA||*||vecC||)cosθ=ACAC

=(2* (-1)+(4*0)+(-3*(-4)))/(sqrt(2^2+4^2+(-3)^2)* (sqrt((-1)^2+0^2+(-4)^2))=2(1)+(40)+(3(4))22+42+(3)2((1)2+02+(4)2)

= 10/(sqrt29*sqrt17)=10/22.2 ~~ 0.4504=102917=1022.20.4504

:. theta=cos^-1(0.4504)~~63.23^0

The angle between vecA and vecC is 63.23^0 [Ans]