Let's start by calculating
vecC=vecA-vecB→C=→A−→B
vecC=〈2,4,-9〉-〈-1,8,-5〉=〈3,-4,-4〉→C=⟨2,4,−9⟩−⟨−1,8,−5⟩=⟨3,−4,−4⟩
The angle between vecA→A and vecC→C is given by the dot product definition.
vecA.vecC=∥vecA∥*∥vecC∥costheta→A.→C=∥→A∥⋅∥→C∥cosθ
Where thetaθ is the angle between vecA→A and vecC→C
The dot product is
vecA.vecC=〈2,4,-9〉.〈3,-4,-4〉=6-16+36=26→A.→C=⟨2,4,−9⟩.⟨3,−4,−4⟩=6−16+36=26
The modulus of vecA→A= ∥〈2,4,-9〉∥=sqrt(4+16+81)=sqrt101∥∥⟨2,4,−9⟩∥=√4+16+81=√101
The modulus of vecC→C= ∥〈3,-4,-4〉∥=sqrt(9+16+16)=sqrt41∥∥⟨3,−4,−4⟩∥=√9+16+16=√41
So,
costheta=(vecA.vecC)/(∥vecA∥*∥vecC∥)=26/(sqrt101*sqrt41)=0.404cosθ=→A.→C∥∥∥→A∥⋅∥→C∥∥∥=26√101⋅√41=0.404
theta=66.2θ=66.2º