If A = <2 ,4 ,-9 >A=<2,4,9>, B = <-1 ,8 ,-5 >B=<1,8,5> and C=A-BC=AB, what is the angle between A and C?

1 Answer
Mar 7, 2017

The angle is =66.2=66.2º

Explanation:

Let's start by calculating

vecC=vecA-vecBC=AB

vecC=〈2,4,-9〉-〈-1,8,-5〉=〈3,-4,-4〉C=2,4,91,8,5=3,4,4

The angle between vecAA and vecCC is given by the dot product definition.

vecA.vecC=∥vecA∥*∥vecC∥costhetaA.C=ACcosθ

Where thetaθ is the angle between vecAA and vecCC

The dot product is

vecA.vecC=〈2,4,-9〉.〈3,-4,-4〉=6-16+36=26A.C=2,4,9.3,4,4=616+36=26

The modulus of vecAA= ∥〈2,4,-9〉∥=sqrt(4+16+81)=sqrt1012,4,9=4+16+81=101

The modulus of vecCC= ∥〈3,-4,-4〉∥=sqrt(9+16+16)=sqrt413,4,4=9+16+16=41

So,

costheta=(vecA.vecC)/(∥vecA∥*∥vecC∥)=26/(sqrt101*sqrt41)=0.404cosθ=A.CAC=2610141=0.404

theta=66.2θ=66.2º