Let's start by calculating
vecC=vecA-vecB→C=→A−→B
vecC=〈2,-5,9〉-〈-9,1,-5> = <11,-6,14>→C=⟨2,−5,9⟩−⟨−9,1,−5>=<11,−6,14>
The angle between vecA→A and vecC→C is given by the dot product definition.
vecA.vecC=∥vecA∥*∥vecC∥costheta→A.→C=∥→A∥⋅∥→C∥cosθ
Where thetaθ is the angle between vecA→A and vecC→C
The dot product is
vecA.vecC=〈2,-5,9〉.〈11,-6,14〉=22+30+126=178→A.→C=⟨2,−5,9⟩.⟨11,−6,14⟩=22+30+126=178
The modulus of vecA→A= ∥〈2,-5,9〉∥=sqrt(4+25+81)=sqrt110∥∥⟨2,−5,9⟩∥=√4+25+81=√110
The modulus of vecC→C= ∥〈11,-6,14〉
∥=sqrt(121+36+196)∥∥⟨11,−6,14⟩∥=√121+36+196
=sqrt353=√353
So,
costheta=(vecA.vecC)/(∥vecA∥*∥vecC∥)=178/(sqrt110*sqrt353)=0.903cosθ=→A.→C∥∥∥→A∥⋅∥→C∥∥∥=178√110⋅√353=0.903
theta=25.4^@θ=25.4∘