If A = <2 ,-5 ,9 >A=<2,5,9>, B = <-9 ,1 ,-5 >B=<9,1,5> and C=A-BC=AB, what is the angle between A and C?

1 Answer
Dec 13, 2017

The angle is =25.4^@=25.4

Explanation:

Let's start by calculating

vecC=vecA-vecBC=AB

vecC=〈2,-5,9〉-〈-9,1,-5> = <11,-6,14>C=2,5,99,1,5>=<11,6,14>
The angle between vecAA and vecCC is given by the dot product definition.

vecA.vecC=∥vecA∥*∥vecC∥costhetaA.C=ACcosθ

Where thetaθ is the angle between vecAA and vecCC

The dot product is

vecA.vecC=〈2,-5,9〉.〈11,-6,14〉=22+30+126=178A.C=2,5,9.11,6,14=22+30+126=178

The modulus of vecAA= ∥〈2,-5,9〉∥=sqrt(4+25+81)=sqrt1102,5,9=4+25+81=110

The modulus of vecCC= ∥〈11,-6,14〉 ∥=sqrt(121+36+196)11,6,14=121+36+196

=sqrt353=353

So,

costheta=(vecA.vecC)/(∥vecA∥*∥vecC∥)=178/(sqrt110*sqrt353)=0.903cosθ=A.CAC=178110353=0.903

theta=25.4^@θ=25.4