If A= <2 ,6 ,-3 > and B= <-8 ,2 ,7 >, what is A*B -||A|| ||B||?

1 Answer
Nov 25, 2017

The answer is =-100.7

Explanation:

The vectors are

vecA= <2,6,-3>

vecB = <-8,2,7>

The modulus of vecA is =||vecA||=||<2,6,-3>||=sqrt(2^2+(6)^2+(-3)^2)=sqrt(4+36+9)=sqrt49=7

The modulus of vecB is =||vecB||=||<-8,2,7>||=sqrt((-8)^2+^2(2)^2+)=sqrt(64+4+49)=sqrt117

Therefore,

||vecA|| xx||vecB||=7*sqrt117=7sqrt117

The dot product is

vecA.vecB= <2,6,-3> .<-8,2,7> =(2xx-8)+(6xx2)+(-3xx7)=-16+12-21=-25

Therefore,

vecA.vecB-||vecA|| xx||vecB||=-25-7sqrt117= -100.7