If A= <2 ,7 ,-4 >A=<2,7,4> and B= <-1 ,-9, 2 >B=<1,9,2>, what is A*B -||A|| ||B||AB||A||||B||?

1 Answer
Nov 28, 2017

The answer is =-150.03=150.03

Explanation:

The vectors are

vecA= <2,7,-4>A=<2,7,4>

vecB = <-1,-9,2>B=<1,9,2>

The modulus of vecAA is =||vecA||=||<2,7,-4>||=sqrt((2)^2+(7)^2+(-4)^2)=sqrt(4+49+16)=sqrt69=A=||<2,7,4>||=(2)2+(7)2+(4)2=4+49+16=69

The modulus of vecBB is =||vecB||=||<-1,-9,2>||=sqrt((-1)^2+(-9)^2+(2)^2)=sqrt(1+81+4)=sqrt86=B=||<1,9,2>||=(1)2+(9)2+(2)2=1+81+4=86

Therefore,

||vecA|| *||vecB||=sqrt69*sqrt86=sqrt5934AB=6986=5934

The dot product is

vecA.vecB= <2,7,-4> .<-1,-9,2>A.B=<2,7,4>.<1,9,2>

=(2xx-1)+(7xx-9)+(-4xx2)=(2×1)+(7×9)+(4×2)

=-2-63-8=-73 =2638=73

Therefore,

vecA.vecB-||vecA|| xx||vecB||=-73-sqrt5934= -150.03A.BA×B=735934=150.03