If #A = <2 ,-8 ,5 >#, #B = <5 ,-7 ,-5 ># and #C=A-B#, what is the angle between A and C?

1 Answer
Jun 19, 2017

The angle is #=59.1º#

Explanation:

Let's start by calculating

#vecC=vecA-vecB#

#vecC=〈2,-8,5〉-〈5,-7,-5〉=〈-3,-1,10〉#

The angle between #vecA# and #vecC# is given by the dot product definition.

#vecA.vecC=∥vecA∥*∥vecC∥costheta#

Where #theta# is the angle between #vecA# and #vecC#

The dot product is

#vecA.vecC=〈2,-8,5〉.〈-3,-1,10〉=-6+8+50=52#

The modulus of #vecA#= #∥〈2,-8,5〉∥=sqrt(4+64+25)=sqrt93#

The modulus of #vecC#= #∥〈-3,-1,10〉∥=sqrt(9+1+100)=sqrt110#

So,

#costheta=(vecA.vecC)/(∥vecA∥*∥vecC∥)=52/(sqrt93*sqrt110)=0.51#

#theta=59.1#º