If A = <3 ,-1 ,8 >A=<3,1,8>, B = <4 ,-3 ,-6 >B=<4,3,6> and C=A-BC=AB, what is the angle between A and C?

1 Answer
Jun 2, 2017

The angle is =28.7º

Explanation:

Let's start by calculating

vecC=vecA-vecB

vecC=〈3,-1,8〉-〈4,-3,-6〉=〈-1,2,14〉

The angle between vecA and vecC is given by the dot product definition.

vecA.vecC=∥vecA∥*∥vecC∥costheta

Where theta is the angle between vecA and vecC

The dot product is

vecA.vecC=〈3,-1,8〉.〈-1,2,14〉=-3-2+112=107

The modulus of vecA= ∥〈3,-1,8〉∥=sqrt(9+1+64)=sqrt74

The modulus of vecC= ∥〈-1,2,14〉∥=sqrt(1+4+196)=sqrt201

So,

costheta=(vecA.vecC)/(∥vecA∥*∥vecC∥)=107/(sqrt74*sqrt201)=0.88

theta=28.7º