If A = <3 ,2 ,5 >, B = <5 ,2 ,8 > and C=A-B, what is the angle between A and C?

1 Answer
May 10, 2017

The angle is =160.9º

Explanation:

Let's start by calculating

vecC=vecA-vecB

vecC=〈3,2,5〉-〈5,2,8〉=〈-2,0,-3〉

The angle between vecA and vecC is given by the dot product definition.

vecA.vecC=∥vecA∥*∥vecC∥costheta

Where theta is the angle between vecA and vecC

The dot product is

vecA.vecC=〈3,2,5〉.〈-2,0,-3〉=-6+0-15=-21

The modulus of vecA= ∥〈3,2,5〉∥=sqrt(9+4+25)=sqrt38

The modulus of vecC= ∥〈-2,0,-3〉∥=sqrt(4+0+9)=sqrt13

So,

costheta=(vecA.vecC)/(∥vecA∥*∥vecC∥)=-21/(sqrt38*sqrt13)=-0.945

theta=160.9º