If A = <3 ,2 ,5 >, B = <5 ,4 ,8 > and C=A-B, what is the angle between A and C?

1 Answer
May 13, 2017

The angle is =169.61º

Explanation:

Let's start by calculating

vecC=vecA-vecB

vecC=〈3,2,5〉-〈5,4,8〉=〈-2,-2,-3〉

The angle between vecA and vecC is given by the dot product definition.

vecA.vecC=∥vecA∥*∥vecC∥costheta

Where theta is the angle between vecA and vecC

The dot product is

vecA.vecC=〈3,2,5〉.〈-2,-2,-3〉=-6-4-15=-25

The modulus of vecA= ∥〈3,2,5〉∥=sqrt(9+4+25)=sqrt38

The modulus of vecC= ∥〈-2,-2,-3〉∥=sqrt(4+4+9)=sqrt17

So,

costheta=(vecA.vecC)/(∥vecA∥*∥vecC∥)=-25/(sqrt38*sqrt17)=-0.984

theta=169.61º