If A=<3,2,5>, B=<5,7,8> and C=AB, what is the angle between A and C?

1 Answer
Jun 25, 2016

θ=87.12

Explanation:

Strategy....

1 find C=AB
2 find || A|| (magnitude of A)
3 find ||C|| (magnitude of C)
4 find A.C (dot product of A and C)
5 use A.C=||A||.||C||. cosθ (dot product formula)

1 ......................................................

Ax=3 ; Ay=2 ; Az=5

Bx=5 ; B5=7 ; Bz=8

C=<(AxBx),(AyBy),(AzBz)>

C=<(35),(2+7),(58)

we obtain :
C=<2,9,3>

2 ........................................................

||A||=A2x+A2y+A2z=32+22+52=38

3 ..........................................................

||C||=c2x+C2y+C2z=(2)2+92+(3)2

||C||=4+81+9=94

4 ...........................................................

AC=AxCx+AyCy+AzCz

AC=3(2)+29+5(3)=6+1815

AC=3

5 ............................................................

3=3894cosθ

cosθ=33894

cosθ=359.766

cosθ=0.0501957635

θ=87.12