If A = <4 ,-5 ,-4 >A=<4,5,4>, B = <5 ,1 ,-6 >B=<5,1,6> and C=A-BC=AB, what is the angle between A and C?

1 Answer
Mar 25, 2018

The angle is =68.1^@=68.1

Explanation:

Let's start by calculating

vecC=vecA-vecBC=AB

vecC=〈4,-5,-4〉-〈5,1,-6〉=〈-1,-6,2〉C=4,5,45,1,6=1,6,2

The angle between vecAA and vecCC is given by the dot product definition.

vecA.vecC=∥vecA∥*∥vecC∥costhetaA.C=ACcosθ

Where thetaθ is the angle between vecAA and vecCC

The dot product is

vecA.vecC=〈4,-5,-4〉.〈-1,-6,2〉=-4+30-8=18A.C=4,5,4.1,6,2=4+308=18

The modulus of vecAA= ∥〈4,-5,-4〉∥=sqrt(16+25+16)=sqrt574,5,4=16+25+16=57

The modulus of vecCC= ∥〈-1,-6,2〉∥=sqrt(1+36+4)=sqrt411,6,2=1+36+4=41

So,

costheta=(vecA.vecC)/(∥vecA∥*∥vecC∥)=18/(sqrt57*sqrt41)=0.37cosθ=A.CAC=185741=0.37

theta=arccos(0.37)=68.1^@θ=arccos(0.37)=68.1